Tentukandeterminan matriks 2x2 ini. Gunakan formula ad - bc. (2*2 - 7*4 = -24) Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120. Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula (-1) ij. Pilih elemen a 12 yang bersimbol - pada tabel simbol. Caramencari nilai x agar matriks singular penma 2b. Tentukan nilai determinan dari matriks ordo 3x3 berikut : . Invers matriks 3x3 rumus cepat . Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari. Misalnya matriks ordo 2 x 3 dapat dikalikan dengan matriks ordo 3 x 3. MatriksSingular Ordo 3X3. Sedangkan tiga langkah lainnya sudah pernah dibahas sebelumnya. A) minor matriks minor mij diperoleh. Minor, kofaktor dan adjoint untuk menentukan invers suatu matriks dengan ordo 3 x 3, maka kita harus memahami tentang matriks minor, kofaktor, dan adjoint. Langkah invers matriks 3x3 metode adjoin, yaitu: Matriks Padaartikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Cara menentukan determinan matriks 3x3. minor ini hanya bisa ditemukan pada matriks 2 x 2 ke atas, sehingga matrik 1 x 1 tidak akan memiliki minor. B banyaknya elemen pada matriks b. M 13 = a 1. Untukฮป = 2 maka. Misalkan diberikan a metriks 3x3 dan vektor x. Untuk menentukan nilai yang skalar, berlaku: nilai eigen dan vektor eigen. Bagaimana cara mencari nilai eigen dan vektor eigen pada matriks berodo 3x3 g. Suatu spl akan memiliki penyelesaian apabila nilai determinannya tidak. Proses pengerjaan nilai dan vektor eigen Padakesempatan ini saya membagikan cara untuk menemukan minor, Kofaktor, dan adjoin. Materi ini sangat penting untuk dikuasai dalam matriks. Pada contoh ini Padafile tersebut saya membuatnya untuk 4 cara mencari invers matriks 3x3, untuk matriks lain dengan ordo 2x2 atau 4x4 anda dapat berkomentar di bawah Langkah ke 2, cari nilai kofaktor, masukkan ke dalam matriks baru, dan transpose matriks baru > untuk mencari kofaktor kalikan angka -1 pangkat jumlah elemen yang ditentukan dengan Hallosemuanya, kali ini kita akan membahas dan belajar tentang materi pembelajaran pada tingkat SMA/MA sederajat. Akan saya buat playlist Materi SMA/MA deng UvrKQn. Unduh PDF Unduh PDF Determinan matriks sering digunakan dalam kalkulus, aljabar linear, dan geometri pada tingkat yang lebih tinggi. Di luar dunia akademik, para insinyur dan pemrogram grafika komputer menggunakan matriks dan determinannya sepanjang waktu. [1] Jika Anda sudah tahu cara menentukan determinan matriks ordo 2x2, Anda hanya perlu belajar kapan menggunakan tambah, kurang, dan kali dalam menentukan determinan matriks ordo 3x3. Tulis matriks ordo 3 x 3 Anda. Kita akan mulai dengan matriks A ordo 3x3 dan cobalah untuk mencari determinan A. Di bawah ini adalah bentuk notasi umum matriks yang akan kita gunakan dan contoh matriks kita a11 a12 a13 1 5 3 M = a21 a22 a23 = 2 4 7 a31 a32 a33 4 6 2 1 Pilih satu baris atau kolom. Jadikan pilihan Anda sebagai baris atau kolom referensi. Apa pun yang Anda pilih, Anda akan tetap mendapat jawaban yang sama. Untuk sementara, pilih baris pertama. Kami akan memberi Anda beberapa saran untuk memilih opsi yang paling mudah dihitung di bagian berikutnya. Pilih baris pertama dari contoh matriks A. Lingkari angka 1 5 3. Di notasi umum, lingkari a11 a12 a13. 2 Coret baris dan kolom elemen pertama Anda. Lihat pada baris atau kolom yang Anda lingkari dan pilih elemen pertama. Coret baris dan kolomnya. Hanya akan tersisa 4 angka yang tidak tersentuh. Jadikan 4 angka ini sebagai matriks ordo 2 x 2. Pada contoh, baris referensi kita adalah 1 5 3. Elemen pertama berada pada baris ke-1 dan kolom ke-1. Coret seluruh baris ke-1 dan kolom ke-1. Tulis elemen yang tersisa menjadi matriks 2 x 2 1 5 3 2 4 7 4 6 2 3Tentukan determinan matriks ordo 2 x 2. Ingat, tentukan determinan matriks [ac bd] dengan cara ad - bc.[2] Anda juga mungkin pernah belajar menentukan determinan matriks dengan menggambar sebuah X di antara matriks 2 x 2. Kalikan dua angka yang terhubung dengan garis \ dari X. Lalu, kurangi dengan jumlah kali dua angka yang terhubung dengan garis /. Gunakan formula ini untuk menghitung determinan matriks 2 x 2. Pada contoh, determinan matriks [46 72] = 4*2 - 7*6 = -34. Determinan ini disebut minor dari elemen yang Anda pilih pada matriks awal.[3] Pada kasus ini, kita baru saja menemukan minor dari a11. 4 Kalikan angka yang telah ditemukan dengan elemen yang Anda pilih. Ingat, Anda telah memilih elemen dari baris atau kolom referensi ketika Anda memutuskan baris dan kolom yang akan dicoret. Kalikan elemen ini dengan determinan matriks 2 x 2 yang telah Anda temukan. Pada contoh, kita memilih a11 yang bernilai 1. Kalikan angka ini dengan -34 determinan dari matriks 2 x 2 untuk mendapatkan 1*-34 = -34. 5 Tentukan simbol dari jawaban Anda. Langkah selanjutnya adalah Anda harus mengalikan jawaban Anda dengan 1 atau-1 untuk mendapatkan kofaktor dari elemen yang Anda pilih. Simbol yang Anda gunakan tergantung dengan letak elemen pada matriks 3 x 3. Ingat, tabel simbol ini digunakan untuk menentukan pengali elemen Anda + - + - + - + - + Karena kita memilih a11 yang bertanda a +, kita akan mengalikan angka dengan +1 atau dengan kata lain, jangan diubah. Jawaban yang muncul akan sama, yaitu -34. Cara lain untuk menentukan simbol adalah dengan menggunakan formula -1i+j yang mana i dan j adalah baris dan kolom elemen. [4] 6 Ulangi proses ini untuk elemen kedua pada baris atau kolom referensi Anda. Kembalilah ke matriks awal 3 x 3 yang Anda lingkari baris atau kolomnya sebelumnya. Ulangi proses yang sama dengan elemen tersebut Coret baris dan kolom elemen tersebut. Pada kasus ini, pilih elemen a12 yang bernilai 5. Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6. Jadikan elemen yang tersisa menjadi matriks 2x2. Pada contoh kita, matriks ordo 2x2 untuk elemen kedua adalah [24 72]. Tentukan determinan matriks 2x2 ini. Gunakan formula ad - bc. 2*2 - 7*4 = -24 Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120 Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula -1ij. Pilih elemen a12 yang bersimbol โ€“ pada tabel simbol. Ganti simbol jawaban kita dengan -1*-120 = 120. 7 Ulangi proses yang sama untuk elemen ketiga. Anda memiliki satu kofaktor lagi untuk menentukan determinan. Hitung i untuk elemen ketiga di baris atau kolom referensi Anda. Berikut merupakan cara cepat menghitung kofaktor a13 pada contoh kita Coret baris ke-1 dan kolom ke-3 untuk mendapatkan [24 46]. Determinannya adalah 2*6 - 4*4 = -4. Kalikan dengan elemen a13 -4 * 3 = -12. Elemen a13 bersimbol + pada tabel simbol, sehingga jawabannya adalah -12. 8 Jumlahkan hasil ketiga hitungan Anda. Ini adalah langkah terakhir. Anda telah menghitung tiga kofaktor, satu untuk setiap elemen pada satu baris atau kolom. Jumlahkan hasil tersebut dan Anda akan menemukan determinan matriks 3 x 3. Pada contoh, determinan matriks adalah -34 + 120 + -12 = 74. Iklan 1 Pilih baris atau kolom referensi yang memiliki angka 0 paling banyak. Ingat, Anda dapat memilih baris atau kolom apa pun yang Anda mau. Apa pun yang Anda pilih, jawaban yang didapat akan sama. Jika Anda memilih baris atau kolom dengan angka 0, Anda hanya perlu menghitung kofaktor dengan elemen yang bukan angka 0 karena Sebagai contoh, pilih baris ke-2 yang memiliki elemen a21, a22, dan a23. Untuk memecahkan soal ini, kita akan menggunakan 3 matriks 2 x 2 yang berbeda, sebut saja A21, A22, and A23. Determinan matriks 3x3 adalah a21A21 - a22A22 + a23A23. Jika a22 dan a23 bernilai 0,formula yang ada akan menjadi a21A21 - 0*A22 + 0*A23 = a21A21 - 0 + 0 = a21A21. Oleh karena itu, kita hanya akan menghitung kofaktor dari satu elemen saja. 2 Gunakan baris tambahan untuk membuat soal matriks menjadi lebih mudah. Jika Anda mengambil nilai dari satu baris dan menambahkannya ke baris yang lain, determinan dari matriks tersebut tidak akan berubah. Hal ini juga berlaku sama untuk kolom. Anda dapat melakukan ini berulang kali atau mengalikannya dengan konstanta sebelum menambahkannya untuk mendapatkan angka 0 di matriks sebanyak mungkin. Hal ini dapat menghemat banyak waktu. Sebagai contoh, Anda memiliki matriks dengan 3 baris [9 -1 2] [3 1 0] [7 5 -2] Untuk menghilangkan angka 9 yang berada di posisi a11, Anda dapat mengalikan nilai di baris ke-2 dengan -3 dan menambahkan hasilnya ke baris pertama. Sekarang, baris pertama yang baru adalah [9 -1 2] + [-9 -3 0] = [0 -4 2]. Matriks yang baru memiliki baris [0 -4 2] [3 1 0] [7 5 -2]. Gunakan trik yang sama pada kolom untuk membuat a12 menjadi angka 0. 3 Gunakan cara cepat untuk matriks segitiga. Pada kasus khusus ini, determinan merupakan hasil dari elemen pada diagonal utama, dari a11 di kiri atas hingga a33 di kanan bawah matriks. Matriks ini masih merupakan matriks 3x3, tetapi matriks "segitiga" memiliki pola khusus dari angka yang bukan angka 0[5] Matriks segitiga atas Seluruh elemen yang tidak bernilai 0 berada pada atau di atas diagonal utama. Seluruh angka di bawah diagonal utama adalah angka 0. Matriks segitiga bawah Seluruh elemen yang tidak bernilai 0 berada pada atau di bawah diagonal utama. Matriks diagonal Seluruh elemen yang tidak bernilai 0 berada pada diagonal utama himpunan bagian dari jenis matriks di atas. Iklan Jika seluruh elemen pada satu baris atau kolom adalah 0, determinan matriks tersebut adalah 0. Metode ini dapat digunakan untuk seluruh ukuran matriks kuadrat. Sebagai contoh, jika Anda menggunakan metode ini untuk matriks ordo 4x4, "coretan" Anda akan menyisakan matriks ordo 3x3 yang determinannya dapat ditentukan dengan mengikuti langkah di atas. Ingat, mengerjakan hal ini dapat membuat Anda bosan! Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Hai Quipperian, apakah kamu masih ingat materi tentang matriks? Membahas masalah matriks, jangan ciut nyali dulu ya. Sebenarnya, matriks itu mudah asal kamu giat untuk memahaminya. Saat membahas matriks, ada dua besaran yang tak boleh terlewatkan, yaitu determinan dan invers. Apa sih determinan dan invers matriks itu? Bagaimana pula cara mencarinya? Daripada penasaran, yuk simak artikel selengkapnya! Pengertian Determinan dan Invers Matriks Determinan adalah suatu nilai yang bisa ditentukan dari unsur-unsur matriks persegi. Jika bentuknya tidak persegi, tentu tidak bisa ditentukan determinannya. Matriks persegi adalah matriks yang jumlah baris dan kolomnya sama, contoh matriks 2 x 2 dan matriks 3 x 3. Lalu, apa yang dimaksud invers matriks? Invers matriks adalah kebalikan dari matriks awal dan dinyatakan sebagai matriks baru. Lalu, bagaimana cara menentukan determinan serta invers? Cara Menentukan Determinan Matriks Berikut ini akan dijabarkan cara menentukan determinan untuk beberapa matriks persegi. 1. Cara menentukan determinan matriks 2 x 2 Matriks 2 x 2 adalah matriks yang memiliki jumlah baris 2 dan jumlah kolom 2 seperti berikut. Cara menentukan determinannya cukup mudah, yaitu sebagai berikut. Lakukan perkalian elemen pada diagonal utama, yaitu ad. Lakukan perkalian elemen pada diagonal sekunder, yaitu bc. Kurangkan hasil perkalian diagonal utama dan diagonal sekunder, ad โ€“ bc. Dengan demikian, detP = ad โ€“ bc. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinan matriks ! Pembahasan Determinan matriks P bisa ditentukan seperti berikut. 2. Cara menentukan determinan matriks 3 x 3 Matriks 3 x 3 adalah matriks yang memiliki jumlah baris dan kolom sebanyak 3. Oleh karena jumlah baris dan kolomnya lebih banyak daripada matriks 2 x 2, maka cara menentukan determinannya juga lebih rumit. Ada beberapa cara yang bisa Quipperian gunakan untuk menentukan determinan matriks ini, yaitu sebagai berikut. Metode Sarrus Metode Sarrus termasuk salah satu metode paling mudah untuk menentukan determinan matriks. Langkah-langkahnya adalah sebagai berikut. Elemen matriks pada kolom ke-1 dan ke-2 ditulis kembali di belakang kolom ke-3. Lakukan perkalian menyilang yang melalui tiga elemen ke kanan bawah dimulai dari kolom paling depan kolom ke-1. Lalu, jumlahkan hasilnya sebagai x1. Lakukan perkalian menyilang melalui tiga elemen ke kiri bawah dari kolom paling belakang kolom ke-5. Lalu, jumlahkan hasilnya sebagai x2. Tentukan hasil determinannya dengan mengurangkan x1 dengan x2. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinannya dengan Metode Sarrus! Pembahasan Mula-mula, kamu harus menulis kembali kolom ke-1 dan ke-2 di belakang kolom ketiga. Lalu, lakukan perkalian menyilang dari kolom ke-1 ke arah kanan bawah. Lakukan langkah yang sama, namun dengan arah yang berlawanan. Terakhir, kurangkan hasil x1 dan x2. Jadi, determinan P adalah -12. Metode reduksi baris Metode reduksi adalah metode yang dilakukan dengan membuat elemen matriksnya berbentuk segitiga, umumnya segitiga atas seperti berikut. Segitiga atas yang dimaksud adalah nilai 0 di elemen a21, a31, dan a32. Jika kamu mendapatkan perintah untuk menggunakan metode reduksi baris, pastikan bahwa elemen-elemen tersebut bernilai 0. Lantas, bagaimana jika nilai awalnya tidak 0? Maka kamu harus mengoperasikan elemen antarbarisnya sedemikian sehingga nilai pada elemen a21, a31, dan a32 bernilai 0. Operasi antarbaris juga meliputi pertukaran antarbaris, misal baris ke-1 ditukar dengan baris ke-3. Jika terjadi pertukaran baris, kamu harus mengalikan matriks itu dengan -1. Perhatikan contoh berikut. Tentukan determinannya dengan metode reduksi baris! Pembahasan Di matriks tersebut sudah ada baris yang bernilai 0, yaitu pada a12. Kamu bisa menukarkan baris ke-1 dan baris ke-3 untuk memudahkan operasi bilangan di setiap elemen. Langkah selanjutnya adalah mengoperasikan sedemikian sehingga elemen a21 = 0, yaitu dengan melakukan penjumlahan antara B2 baris 2 dengan 4 kali B1 baris 1. Metode minor kofaktor Metode minor kofaktor adalah metode penentuan determinan matriks menggunakan minor kofaktor matriks. Mungkin, kamu lebih mengenalnya dengan metode tutup baris kolom. Secara matematis, rumus determinan matriks dengan minor kofaktor adalah sebagai berikut. Dengan C = kofaktor ke-ij dan M = minor ke-ij. Perhatikan contoh berikut. Tentukan determinannya dengan metode minor kofaktor. Mula-mula, kamu harus mencari C11, C12, dan, C13 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Dengan demikian, determinan P dirumuskan sebagai berikut. Ternyata, hasil determinan P yang diperoleh dari metode Sarrus, metode reduksi baris, dan metode minor kofaktor sama lho. Untuk mengerjakan soal-soal serupa, pilihlah metode yang kamu anggap lebih mudah, ya. Cara di atas juga bisa diterapkan pada matriks ordo 4 x 4. Namun, pembahasan lengkap tentang determinan matriks 4 x 4 akan kamu jumpai di bangku perguruan tinggi. โ˜บ Cara Menentukan Invers Matriks Sama seperti determinan, untuk menentukan invers matriks, kamu bisa menggunakan beberapa metode. Salah satu metodenya melibatkan nilai determinan. Lantas, bagaimana cara menentukan invers matriks? Cara menentukan invers matriks 2 x 2 Untuk menentukan invers matriks 2 x 2 hanya ada satu cara, yaitu dengan persamaan berikut. Adjoin P diperoleh dengan menukar elemen matriks a11 dan a22, lalu mengalikan elemen matriks a12 dan a21 dengan -1. Perhatikan contoh berikut. Tentukan invers matriks P berikut. Pembahasan Mula-mula, kamu harus menentukan determinan matriksnya. Selanjutnya, tentukan adjoin P. Dengan demikian, invers matriks P bisa dinyatakan sebagai berikut. Cara menentukan invers matriks 3 x 3 Invers matriks 3 x 3 bisa ditentukan dengan dua cara, yaitu adjoin dan OBE operasi baris elementer. Apa perbedaan antara kedua cara itu? Metode adjoin Cara menentukan matriks 3 x 3 dengan adjoin dilakukan dengan mencari semua kofaktor di setiap elemen matriksnya. Cara mencari kofaktor sama dengan cara sebelumnya, yaitu dengan menutup baris dan kolom. Perhatikan contoh berikut. Tentukan invers matriks P tersebut dengan metode adjoin! Pembahasan Mula-mula, kamu harus mencari C11, C12, C13, sampai C33 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Nilai C21 Diperoleh Nilai C22 Diperoleh Nilai C23 Diperoleh Nilai C31 Diperoleh Nilai C32 Diperoleh Nilai C33 Diperoleh Dengan demikian, kofaktor matriks P adalah sebagai berikut. Lalu, tentukan adjoin matriks P dengan mengubah elemen baris menjadi kolom seperti berikut. Jadi, invers matriks P adalah sebagai berikut. Sampai sini, apakah Quipperian sudah paham? Metode OBE operasi baris elementer Cara ini hampir sama dengan metode reduksi baris pada determinan. Bedanya, kamu harus mengarahkan matriksnya menjadi matriks identitas. Persamaan umum untuk menyelesaikan metode obe ini adalah sebagai berikut. Perhatikan contoh berikut. Tentukan invers matriks tersebut dengan metode obe! Pembahasan Mula-mula, kamu harus menentukan persamaan umumnya seperti berikut. Dari langkah yang sedemikian panjang, diperoleh invers matriks P yaitu sebagai berikut. Ternyata, hasil inversnya sama dengan invers matriks cara adjoin. Namun, cara OBE ini lebih panjang dan rumit. Dalam penerapannya, Quipperian bisa memilih cara yang dianggap lebih mudah, ya. Sampai sini, apakah Quipperian sudah paham bagaimana cara menentukan determinan dan invers matriks? Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk materi lengkapnya, bisa Quipperian lihat di Quipper Video. Yuk, buruan gabung biar ujian jadi lebih siap! Salam Quipper! Jika adik-adik menemukan soal tentang Matriks dan menentukan Minor Dan Kofaktor beserta adjoinnya, Simak pembahasan serta contoh soal yang afrizatul bagikan agar mengetahui cara mencari jawaban dari soal masuk ke contoh soalnya, ada baiknya adik-adik ketahui dulu apa yang dimaksud dengan minor matrik dan kofaktor matriks terutama ketika ingin mengerjakan soal tentang invers matriks pada bidang studi Yang Dimaksud Dengan Matriks Minor?Mencari nilai minor suatu matriks Mij adalah mencari nilai determinannya dengan cara menghilangkan elemen-elemen pada baris ke-i dan elemen-elemen pada kolom jika terdapat matriks ordo 2ร—2 maka ketika mencari nilai minor pada matriks tersebut kita mulai dari M11, M12 lalu M21 dan juga jika matriks ordo 3ร—3, kita bisa cari minornya dari M11, M12, M13 kemudian M21, M22, M23 dan M31, M32, Yang Dimaksud Kofaktor Matriks?Kofaktor matriks merupakan matriks yang dimana elemen-elemennya adalah nilai minor dari matriks nilai elemen pada matriks kofaktor berisi nilai minor yang sudah didapatkan sebelumnya sesuai dengan posisi elemen lebih mudah, adik-adik bisa menyimak contoh soal di bawah ini!Baca juga Contoh Soal Matriks Kelas 11 Beserta Jawabannya Essay & Pilihan GandaDisini kami menggunakan 1 contoh matriks dengan ordo 3ร—3, Jadi untuk matriks ordo 2ร—2, 4ร—4 dan sebagainya bisa menggunakan cara yang sama untuk mencari minor, kofaktor serta adjoin matriks A dengan ordo 3ร—3 dengan elemen 1, 4, 3, 2, 5, 1, 3, 4, 2 Tentukan minor, kofaktor dan adjoin dari matriks A!1. Mencari Minor Matriks 3ร—3Penyelesaian Pembahasan Pertama kita cari dulu M11 atau minor baris ke-1 dan kolom ke-1 yaitu Baris ke-1 = 1, 4, 3Kolom ke-1 = 1, 2, 3Sehingga menghasilkan matriks ordo 2ร—2 atau elemen yang tidak tertutup yaitu 5, 1, 4, 2. Dan kita cari kesimpulannya M11 adalah determinan matriks ordo 2ร—2 atau elemen yang tidak tertutup minor M11 maka bisa kita kalikan silang yaitu 5ร—2 dan 1ร—4, Dan elemen minor M11 hasilnya adalah M12, elemen yang tidak tertutup nya adalah 2, 1, 3, 2. Dan lakukan perkalian silang seperti cara M13, Ulangi cara tersebut sampai ke minor M33 atau baris ke-3 dan kolom mendapatkan hasil minor dari matriks A, sekarang kita mencari kofaktornya!2. Mencari Kofaktor Matriks 3ร—3Penyelesaian Pembahasan Kofaktor pada matriks A berarti simbolnya kof A, Kemudian masukkan elemen minor M11 sampai perhatikan kenapa ada yang positif dan ada yang negatif? Karena mencari kofaktor pada matriks simbolnya akan seperti ini Jadi setiap elemen berbeda-beda baris pertama positif, negatif, positifbaris kedua negatif, positif, negatifbaris ketiga positif, negatif, untuk matriks A dengan ordo 3ร—3, lalu bagaimana polanya jika matris dengan ordo 4ร—4 atau yang lainnya?Adik-adik bisa tambahkan saja di baris pertama negatif, baris kedua positif dan baris ketiga negatif, yang penting setiap baris sudah paham, kita masukkan elemen minor yang telah kita dapatkan tadi sesuai tanda atau pola yang telah sebelum mencari kofaktor pada suatu matriks, adik-adik harus mengetahui dulu cara mencari terakhir yaitu dengan mengkalikan tanda positif atau negatif sesuai angka atau nilai pada elemen minor Mencari Adjoin Matriks 3ร—3Berikutnya kita akan mencari adjoin matriks A tersebut, Hal ini sangat penting karena cara ini berguna untuk mencari invers suatu Pembahasan Untuk mencari adjoin pada sebuah matriks, kita cari dulu kofaktornya lalu kita transpose. Maka kesimpulannya adjoin matriks A sama dengan transpose matriks kita sudah mendapatkan hasil dari kofaktor matriks A 3ร—3 di cara yang ke-dua sebelumnya, maka kita cukup transpose saja matriks ingat bagaimana cara mentranspose sebuah matriks? Benar, Caranya mengubah baris menjadi kolom dan kolom menjadi kita telah mendapatkan hasil transpose kofaktor matrik A atau Adjoin matriks pembahasan singkat materi tentang Matriks untuk mencari Minor Dan Kofaktor beserta adjoin dengan ordo 3ร—3, Semoga bisa mudah dipahami dan membantu adik-adik dalam mengerjakan tugas sejenis.